Name: 
 

Chapter 6 Pre Test



 1. 

The given  points represent the vertices of a triangle.Select the  triangle ABC  in the coordinate plane.

mc001-1.jpg
a.

mc001-2.jpg
d.

mc001-5.jpg
b.

mc001-3.jpg
e.

mc001-6.jpg
c.

mc001-4.jpg
 

 2. 

Find the vertex, focus, and directrix of the parabola.

mc002-1.jpg
a.
Vertex: mc002-2.jpg; Focus: mc002-3.jpg; Directrix: mc002-4.jpg
b.
Vertex: mc002-5.jpg; Focus: mc002-6.jpg; Directrix: mc002-7.jpg
c.
Vertex: mc002-8.jpg; Focus: mc002-9.jpg; Directrix: mc002-10.jpg
d.
Vertex: mc002-11.jpg; Focus: mc002-12.jpg; Directrix: mc002-13.jpg
e.
Vertex: mc002-14.jpg; Focus: mc002-15.jpg; Directrix: mc002-16.jpg
 

 3. 

The revenue R (in dollars) generated by the sale of x units of a digital camera is given by
mc003-1.jpg.
Approximate the number of sales that will maximize revenue.
a.
Maximum revenue occurs at mc003-2.jpg units.
b.
Maximum revenue occurs at mc003-3.jpg units.
c.
Maximum revenue occurs at mc003-4.jpg units.
d.
Maximum revenue occurs at mc003-5.jpg units.
e.
Maximum revenue occurs at mc003-6.jpg units.
 

 4. 

Find the center, vertices and foci of the hyperbola.

mc004-1.jpg
a.
Center: mc004-2.jpg
Vertices:  mc004-3.jpg
Foci:mc004-4.jpgmc004-5.jpg, mc004-6.jpg
b.
Center: mc004-7.jpg
Vertices:  mc004-8.jpg
Foci:mc004-9.jpg mc004-10.jpgmc004-11.jpg)
c.
Center: mc004-12.jpg
Vertices:  mc004-13.jpg
Foci:mc004-14.jpgmc004-15.jpg, mc004-16.jpg
d.
Center: mc004-17.jpg
Vertices:  mc004-18.jpg
Foci:mc004-19.jpgmc004-20.jpg, mc004-21.jpg
e.
Center: mc004-22.jpg
Vertices:  mc004-23.jpg
Foci:mc004-24.jpgmc004-25.jpg, mc004-26.jpg
 

 5. 

The mc005-1.jpg-coordinate system has been rotated mc005-2.jpg degrees from the mc005-3.jpg-coordinate system. The coordinates of a point in the mc005-4.jpg-coordinate system are given. Find the coordinates of the point in the rotated coordinate system.

mc005-5.jpg
, mc005-6.jpg
a.
mc005-7.jpg
b.
mc005-8.jpg
c.
mc005-9.jpg
d.
mc005-10.jpg
e.
mc005-11.jpg
 

 6. 

Select the graph of the following equation, showing both sets of axes.

mc006-1.jpg   
a.

mc006-2.jpg
d.

mc006-5.jpg
b.

mc006-3.jpg
e.

mc006-6.jpg
c.

mc006-4.jpg
 

 7. 

Use the discriminant to classify the graph.

mc007-1.jpg
a.
The graph is a parabola.
b.
The graph is a hyperbola.
c.
The graph is a ellipse.
d.
The graph is a cone.
e.
The graph is a circle.
 

 8. 

Select the parametric equations matching with the following graph.

mc008-1.jpg
a.
Serpentine curve: mc008-2.jpg, mc008-3.jpg
b.
Serpentine curve: mc008-4.jpg, mc008-5.jpg
c.
Serpentine curve: mc008-6.jpg, mc008-7.jpg
d.
Serpentine curve: mc008-8.jpg, mc008-9.jpg
e.
Serpentine curve: mc008-10.jpg, mc008-11.jpg
 

 9. 

Convert the rectangular equation to polar form. Assume mc009-1.jpg.

mc009-2.jpg
a.
mc009-3.jpg
b.
mc009-4.jpg
c.
mc009-5.jpg
d.
mc009-6.jpg
e.
mc009-7.jpg
 

 10. 

Convert the rectangular equation to polar form. Assume mc010-1.jpg.

mc010-2.jpg
a.
mc010-3.jpg
b.
mc010-4.jpg
c.
mc010-5.jpg
d.
mc010-6.jpg
e.
mc010-7.jpg
 

 11. 

Convert the rectangular equation to polar form. Assume mc011-1.jpg.

mc011-2.jpg
a.
mc011-3.jpg
b.
mc011-4.jpg
c.
mc011-5.jpg
d.
mc011-6.jpg
e.
mc011-7.jpg
 

 12. 

Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.

mc012-1.jpg
a.
Symmetric with respect to mc012-2.jpg, polar axis, pole
Circle with radius mc012-3.jpg

mc012-4.jpg
d.
Symmetric with respect to mc012-11.jpg, polar axis, pole
Circle with radius mc012-12.jpg

mc012-13.jpg
b.
Symmetric with respect to mc012-5.jpg, polar axis, pole
Circle with radius mc012-6.jpg

mc012-7.jpg
e.
Symmetric with respect to mc012-14.jpg, polar axis, pole
Circle with radius mc012-15.jpg

mc012-16.jpg
c.
Symmetric with respect to mc012-8.jpg, polar axis, pole
Circle with radius mc012-9.jpg

mc012-10.jpg
 

 13. 

Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.

mc013-1.jpg
a.
mc013-2.jpg
mc013-3.jpg
d.
mc013-8.jpg
mc013-9.jpg
b.
mc013-4.jpg
mc013-5.jpg
e.
mc013-10.jpg
mc013-11.jpg
c.
mc013-6.jpg
mc013-7.jpg
 

 14. 

Select the graph of mc014-1.jpg over the interval. Describe the part of the graph obtained in this case.

mc014-2.jpg
a.

mc014-3.jpg
Entire circle
d.

mc014-6.jpg
Entire circle
b.

mc014-4.jpg
Entire circle
e.

mc014-7.jpg
Entire circle
c.

mc014-5.jpg
Entire circle
 

 15. 

Select the graph of the equation.

mc015-1.jpg
a.

mc015-2.jpg
d.

mc015-5.jpg
b.

mc015-3.jpg
e.

mc015-6.jpg
c.

mc015-4.jpg
 

 16. 

Select the correct graph of the polar equation. Find an interval for mc016-1.jpg for which the graph is traced only once.

mc016-2.jpg
a.

mc016-3.jpg
mc016-4.jpg
d.

mc016-9.jpg
mc016-10.jpg
b.

mc016-5.jpg
mc016-6.jpg
e.

mc016-11.jpg
mc016-12.jpg
c.

mc016-7.jpg
mc016-8.jpg
 

 17. 

Find a polar equation of the conic with its focus at the pole.

mc017-1.jpg
a.
mc017-2.jpg
b.
mc017-3.jpg
c.
mc017-4.jpg
d.
mc017-5.jpg
e.
mc017-6.jpg
 

 18. 

Identify the conic and select its correct graph.

mc018-1.jpg
a.
mc018-2.jpgmc018-3.jpg <1 mc018-4.jpg Hyperbola

mc018-5.jpg
d.
mc018-14.jpg Hyperbola

mc018-15.jpg
b.
mc018-6.jpgmc018-7.jpg <1 mc018-8.jpg Hyperbola
mc018-9.jpg

e.
mc018-16.jpgmc018-17.jpg <1 mc018-18.jpg Hyperbola

mc018-19.jpg
c.
mc018-10.jpgmc018-11.jpg <1 mc018-12.jpg Hyperbola

mc018-13.jpg
 

 19. 

Select correct graph to graph rotated conic.

mc019-1.jpg
a.
   mc019-2.jpg
d.

mc019-5.jpg
b.

mc019-3.jpg
e.

mc019-6.jpg 
c.
  mc019-4.jpg
 

 20. 

A satellite in a 100-mile-high circular orbit around Earth has a velocity of approximately 17,500 miles per hour. If this velocity is multiplied by mc020-1.jpg, the satellite will have the minimum velocity necessary to escape Earth’s gravity and will follow a parabolic path with the center of Earth as the focus. (Hints: The radius of Earth is 4000 miles.)

mc020-2.jpg
Find the distance between the surface of the Earth and the satellite when mc020-3.jpg.
a.
Distance between surface of Earth and satellite:110 miles
b.
Distance between surface of Earth and satellite:105 miles
c.
Distance between surface of Earth and satellite:120 miles
d.
Distance between surface of Earth and satellite:100 miles
e.
Distance between surface of Earth and satellite:102 miles
 



 
Check Your Work     Start Over