Name: 
 

Chapter 6 Post Test



 1. 

Find the inclination mc001-1.jpg (in degrees) of the line with a slope of mc001-2.jpg. Round your answer to one decimal places.

mc001-3.jpg
a.
mc001-4.jpg
b.
mc001-5.jpg
c.
mc001-6.jpg
d.
mc001-7.jpg
e.
mc001-8.jpg
 

 2. 

Find the inclination mc002-1.jpg (in degrees) of the line with a slope of mc002-2.jpg. Round your answer to one decimal places.

mc002-3.jpg
a.
mc002-4.jpg
b.
mc002-5.jpg
c.
mc002-6.jpg
d.
mc002-7.jpg
e.
mc002-8.jpg
 

 3. 

Find the standard form of the equation of the parabola with the given characteristics.

Vertex: mc003-1.jpg; directrix: mc003-2.jpg
a.
mc003-3.jpg
b.
mc003-4.jpg
c.
mc003-5.jpg
d.
mc003-6.jpg
e.
mc003-7.jpg
 

 4. 

The revenue R (in dollars) generated by the sale of x units of a patio furniture set is given by
mc004-1.jpg.
Select the correct graph of the function.
a.

mc004-2.jpg
d.

mc004-5.jpg
b.

mc004-3.jpg
e.

mc004-6.jpg
c.

mc004-4.jpg
.
 

 5. 

Find the standard form of the equation of the ellipse with the given characteristics and center at the origin.

Vertices: mc005-1.jpg; Foci: mc005-2.jpg
a.
mc005-3.jpg
b.
mc005-4.jpg
c.
mc005-5.jpg
d.
mc005-6.jpg
e.
mc005-7.jpg
 

 6. 

Find the vertices of the conic.

mc006-1.jpg
a.
Vertices: mc006-2.jpg
b.
Vertices: mc006-3.jpg
c.
Vertices: mc006-4.jpg
d.
Vertices: mc006-5.jpg
e.
Vertices: mc006-6.jpg
 

 7. 

An elliptical stained-glass insert is to be fitted in a
mc007-1.jpg
rectangular opening (see figure). Using the coordinate system shown, find an equation for the ellipse.
mc007-2.jpg
a.
mc007-3.jpg
b.
mc007-4.jpg
c.
mc007-5.jpg
d.
mc007-6.jpg
e.
mc007-7.jpg
 

 8. 

Find the center, vertices and foci of the hyperbola.

mc008-1.jpg
a.
Center: mc008-2.jpg
Vertices:  mc008-3.jpg
Foci:mc008-4.jpgmc008-5.jpg, mc008-6.jpg
b.
Center: mc008-7.jpg
Vertices:  mc008-8.jpg
Foci:mc008-9.jpg mc008-10.jpgmc008-11.jpg)
c.
Center: mc008-12.jpg
Vertices:  mc008-13.jpg
Foci:mc008-14.jpgmc008-15.jpg, mc008-16.jpg
d.
Center: mc008-17.jpg
Vertices:  mc008-18.jpg
Foci:mc008-19.jpgmc008-20.jpg, mc008-21.jpg
e.
Center: mc008-22.jpg
Vertices:  mc008-23.jpg
Foci:mc008-24.jpgmc008-25.jpg, mc008-26.jpg
 

 9. 

Find the standard form of the equation of the hyperbola with the given characteristics.

Vertices: (4,0),(8,0); foci: (0,0), (10,0)
a.
mc009-1.jpg
b.
mc009-2.jpg
c.
mc009-3.jpg
d.
mc009-4.jpg
e.
mc009-5.jpg
 

 10. 

Select the graph of the equation as a circle, a parabola, an ellipse, or a hyperbola.

mc010-1.jpg
a.
Parabola
b.
Circle
c.
Hyperbola
d.
Ellipse
e.
None of the above
 

 11. 

Rotate the axes to eliminate the xy-term in the equation. Then write the equation in standard form.

mc011-1.jpg
a.
mc011-2.jpg
b.
mc011-3.jpg
c.
mc011-4.jpg
d.
mc011-5.jpg
e.
mc011-6.jpg
 

 12. 

Use the Quadratic Formula to solve for mc012-1.jpg.

mc012-2.jpg

a.
mc012-3.jpg
b.
mc012-4.jpg
c.
mc012-5.jpg
d.
mc012-6.jpg
e.
mc012-7.jpg
 

 13. 

Consider the equation.

mc013-1.jpg

Without calculating, explain how to rewrite the equation so that it does not have an mc013-2.jpg-term.

a.
To rewrite the equation mc013-3.jpg  so that it does not have an mc013-4.jpg-term, you can solve for mc013-5.jpg in terms of mc013-6.jpg by completing the square or using the Quadratic Formula.
b.
To rewrite the equation mc013-7.jpg  so that it does not have an mc013-8.jpg-term, you can solve for mc013-9.jpg in terms of mc013-10.jpg by completing the square or using the Quadratic Formula.
c.
To rewrite the equation mc013-11.jpg  so that it has an mc013-12.jpg-term, you can solve for mc013-13.jpg in terms of mc013-14.jpg by taking square root or using the Quadratic Formula.
d.
To rewrite the equation mc013-15.jpg  so that it has an mc013-16.jpg-term, you can solve for mc013-17.jpg in terms of mc013-18.jpg by completing the square or using the Quadratic Formula.
e.
To rewrite the equation mc013-19.jpg  so that it has an mc013-20.jpg-term, you can solve for mc013-21.jpg in terms of mc013-22.jpg by completing the square or using the Quadratic Formula.
 

 14. 

A point (a,b) shown in  below graph in polar coordinates is given. Convert the point to rectangular coordinates.

mc014-1.jpg

mc014-2.jpg
a.
mc014-3.jpg
b.
mc014-4.jpg
c.
mc014-5.jpg
d.
mc014-6.jpg
e.
mc014-7.jpg
 

 15. 

A point in rectangular coordinates is given. Convert the point to polar coordinates.

mc015-1.jpg
a.
mc015-2.jpg
b.
mc015-3.jpg
c.
mc015-4.jpg
d.
mc015-5.jpg
e.
mc015-6.jpg
 

 16. 

Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.

mc016-1.jpg
a.
Symmetric with respect to mc016-2.jpg, polar axis, pole
Circle with radius mc016-3.jpg

mc016-4.jpg
d.
Symmetric with respect to mc016-11.jpg, polar axis, pole
Circle with radius mc016-12.jpg

mc016-13.jpg
b.
Symmetric with respect to mc016-5.jpg, polar axis, pole
Circle with radius mc016-6.jpg

mc016-7.jpg
e.
Symmetric with respect to mc016-14.jpg, polar axis, pole
Circle with radius mc016-15.jpg

mc016-16.jpg
c.
Symmetric with respect to mc016-8.jpg, polar axis, pole
Circle with radius mc016-9.jpg

mc016-10.jpg
 

 17. 

Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.

mc017-1.jpg
a.
Symmetric with respect to mc017-2.jpg
mc017-3.jpg

mc017-4.jpg
d.
Symmetric with respect to mc017-11.jpg
mc017-12.jpg

mc017-13.jpg
b.
Symmetric with respect to mc017-5.jpg
mc017-6.jpg

mc017-7.jpg
e.
Symmetric with respect to mc017-14.jpg
mc017-15.jpg

mc017-16.jpg
c.
Symmetric with respect to mc017-8.jpg
mc017-9.jpg

mc017-10.jpg
 

 18. 

Select the correct graph of the polar equation. Find an interval for mc018-1.jpg for which the graph is traced only once.

mc018-2.jpg
a.

mc018-3.jpg
mc018-4.jpg
d.

mc018-9.jpg
mc018-10.jpg
b.

mc018-5.jpg
mc018-6.jpg
e.

mc018-11.jpg
mc018-12.jpg
c.

mc018-7.jpg
mc018-8.jpg
 

 19. 

Find a polar equation of the conic with its focus at the pole.

mc019-1.jpg
a.
mc019-2.jpg   
b.
mc019-3.jpg
c.
mc019-4.jpg
d.
mc019-5.jpg
e.
mc019-6.jpg
 

 20. 

The comet Hale-Bopp has an elliptical orbit with an eccentricity of mc020-1.jpg .The length of the major axis of the orbit is approximately 504 astronomical units. Find a polar equation for the orbit. How close does the comet come to the sun?
a.
mc020-2.jpg
Closest point to the sun is mc020-3.jpg 2.016 astronomical unit.
b.
mc020-4.jpg
Closest point to the sun is mc020-5.jpg 2.016 astronomical unit.
c.
mc020-6.jpg
Closest point to the sun is mc020-7.jpg 2.016 astronomical unit.
d.
mc020-8.jpg
Closest point to the sun is mc020-9.jpg 2.016 astronomical unit.
e.
mc020-10.jpg
Closest point to the sun is mc020-11.jpg 2.016 astronomical unit.
 



 
Check Your Work     Start Over