Name: 
 

Chapter 5 Post Test



 1. 

Select the graph of the function.

mc001-1.jpg
a.

mc001-2.jpg
d.

mc001-5.jpg
b.

mc001-3.jpg
e.

mc001-6.jpg
c.

mc001-4.jpg
 

 2. 

Evaluate the function at the indicated value of mc002-1.jpg. Round your result to three decimal places.

Function                             Value

mc002-2.jpg                    mc002-3.jpg
a.
mc002-4.jpg
b.
mc002-5.jpg
c.
mc002-6.jpg
d.
mc002-7.jpg
e.
mc002-8.jpg
 

 3. 

Select the graph of the function.

mc003-1.jpg
a.

mc003-2.jpg
d.

mc003-5.jpg
b.

mc003-3.jpg
e.

mc003-6.jpg
c.

mc003-4.jpg
 

 4. 

Select the graph of the exponential function.

mc004-1.jpg
a.

mc004-2.jpg
d.

mc004-5.jpg
b.

mc004-3.jpg
e.

mc004-6.jpg
c.

mc004-4.jpg
 

 5. 

Select the graph of the exponential function.

mc005-1.jpg
a.

mc005-2.jpg
d.

mc005-5.jpg
b.

mc005-3.jpg
e.

mc005-6.jpg
c.

mc005-4.jpg
 

 6. 

Use the One-to-One Property to solve the equation for mc006-1.jpg.

mc006-2.jpg
a.
mc006-3.jpg
b.
mc006-4.jpg
c.
mc006-5.jpg
d.
mc006-6.jpg
e.
mc006-7.jpg
 

 7. 

Use the One-to-One Property to solve the following equation for x.
mc007-1.jpg
a.
mc007-2.jpg
b.
mc007-3.jpg
c.
mc007-4.jpg
d.
mc007-5.jpg
e.
mc007-6.jpg
 

 8. 

Select the graph of the function.

mc008-1.jpg
a.

mc008-2.jpg
d.

mc008-5.jpg
b.

mc008-3.jpg
e.

mc008-6.jpg
c.

mc008-4.jpg
 

 9. 

Rewrite the logarithm as a ratio of common logarithms.

mc009-1.jpg
a.
mc009-2.jpg
b.
mc009-3.jpg
c.
mc009-4.jpg
d.
mc009-5.jpg
e.
None of these
 

 10. 

Determine whether the statement is true or false given that mc010-1.jpg.

mc010-2.jpg
a.
True
b.
False
 

 11. 

Evaluate the logarithm using the change-of-base formula. Round your result to three decimal
places.

mc011-1.jpg
a.
mc011-2.jpg
b.
mc011-3.jpg
c.
mc011-4.jpg
d.
mc011-5.jpg
e.
mc011-6.jpg
 

 12. 

Solve for mc012-1.jpg. Approximate the result to three decimal places.

mc012-2.jpg
a.
mc012-3.jpg
b.
mc012-4.jpg
c.
mc012-5.jpg
d.
mc012-6.jpg
e.
mc012-7.jpg
 

 13. 

Solve the exponential equation algebraically. Approximate the result to three decimal places.

mc013-1.jpg
a.
mc013-2.jpg
b.
mc013-3.jpg
c.
mc013-4.jpg
d.
mc013-5.jpg
e.
mc013-6.jpg
 

 14. 

Solve the exponential equation algebraically. Approximate the result to three decimal places.

mc014-1.jpg
a.
mc014-2.jpg
b.
mc014-3.jpg
c.
mc014-4.jpg
d.
mc014-5.jpg
e.
mc014-6.jpg
 

 15. 

Solve the logarithmic equation algebraically. Approximate the result to three decimal places.

mc015-1.jpg
a.
mc015-2.jpg
b.
mc015-3.jpg
c.
mc015-4.jpg
d.
mc015-5.jpg
e.
mc015-6.jpg
 

 16. 

Select the correct graph for the given function

mc016-1.jpg
a.

mc016-2.jpg
d.

mc016-5.jpg
b.

mc016-3.jpg
e.

mc016-6.jpg
c.

mc016-4.jpg
 

 17. 

Select the correct graph for the given function

mc017-1.jpg
a.

mc017-2.jpg
d.

mc017-5.jpg
b.

mc017-3.jpg
e.

mc017-6.jpg
c.

mc017-4.jpg
 

 18. 

Complete the table for a savings account in which interest is compounded continuously.

Initial investment
Annual rate
Time to double
Amount after 10 years
mc018-1.jpg
---
---
mc018-2.jpg

(Round the answer upto two decimal places.)
a.
Annual rate: mc018-3.jpg
Time to double: mc018-4.jpg
b.
Annual rate: mc018-5.jpg
Time to double: 10 mc018-6.jpg
c.
Annual rate: mc018-7.jpg
Time to double: 10 mc018-8.jpg
d.
Annual rate: mc018-9.jpg
Time to double: 10 mc018-10.jpg
e.
Annual rate: mc018-11.jpg
Time to double: 15 mc018-12.jpg
 

 19. 

The populations P (in thousands) of Orlando, Florida from 2000 through 2007 can be modeled by mc019-1.jpg where t represents the year, with mc019-2.jpg corresponding to 2000. In 2005, the population of Orlando, Florida was about 1,902,000. Find the value of k.
a.
mc019-3.jpg
b.
mc019-4.jpg
c.
mc019-5.jpg
d.
mc019-6.jpg
e.
mc019-7.jpg
 

 20. 

The chemical acidity of a solution is measured in units of pH: mc020-1.jpg, where mc020-2.jpg is the hydrogen ion concentration in the solution. If a sample of rain has a pH of 3.2, how many times higher is its mc020-3.jpg than pure water's, which has a pH of 7?
a.
mc020-4.jpg
b.
mc020-5.jpg
c.
7
d.
mc020-6.jpg
e.
mc020-7.jpg
 



 
Check Your Work     Start Over