Name: 
 

Chapter 3 Pre Test



 1. 

Use the Law of Sines to solve (if possible) the triangle. Round your answers to two decimal places.

mc001-1.jpg
a.
mc001-2.jpg
b.
mc001-3.jpg
c.
mc001-4.jpg
d.
mc001-5.jpg
e.
No Solution
 

 2. 

Find values for mc002-1.jpg such that the triangle has one solution.

mc002-2.jpg
a.
mc002-3.jpg
b.
mc002-4.jpg
c.
mc002-5.jpg
d.
mc002-6.jpg
e.
mc002-7.jpg
 

 3. 

Find values for mc003-1.jpg such that the triangle has two solutions.

mc003-2.jpg
a.
mc003-3.jpg
b.
mc003-4.jpg
c.
mc003-5.jpg
d.
mc003-6.jpg
e.
mc003-7.jpg
 

 4. 

Because of prevailing winds, a tree grew so that it was leaning mc004-1.jpg from the vertical. At a point mc004-2.jpg meters from the tree, the angle of elevation to the top of the tree is mc004-3.jpg (see figure). Find the height mc004-4.jpg of the tree.

mc004-5.jpg

where mc004-6.jpg m
            mc004-7.jpg

(Round your answer to two decimal places.)
a.
mc004-8.jpg m
b.
mc004-9.jpg m
c.
mc004-10.jpg m
d.
mc004-11.jpg m
e.
mc004-12.jpg m
 

 5. 

Use the low of Cosines to solve the given triangle. Round your answer to two decimal places.

mc005-1.jpg mc005-2.jpg , b = mc005-3.jpg
a.
mc005-4.jpg
b.
mc005-5.jpg
c.
mc005-6.jpg
d.
mc005-7.jpg
e.
mc005-8.jpg
 

 6. 

Use the Heron’s formula to find the area of the triangle. Round your answer upto two decimal places.

mc006-1.jpg
a.
mc006-2.jpg
b.
1949.75
c.
mc006-3.jpg
d.
mc006-4.jpg
e.
mc006-5.jpg
 

 7. 

To determine the distance between two aircraft, a tracking station continuously determines the distance to each aircraft and the angle mc007-1.jpg between them (see figure). Determine the distance a between the planes when A= mc007-2.jpg miles, b= mc007-3.jpg miles, and c= mc007-4.jpg miles.

mc007-5.jpg

a.
mc007-6.jpg miles
b.
mc007-7.jpg miles
c.
mc007-8.jpg miles
d.
mc007-9.jpg miles
e.
mc007-10.jpg miles
 

 8. 

The initial and terminal points of a vector are given. Select a linear combination of the standard unit vectors i and j.
  
Initial Point
Terminal Point
mc008-1.jpg
mc008-2.jpg

a.
mc008-3.jpg
b.
mc008-4.jpg
c.
mc008-5.jpg
d.
mc008-6.jpg
e.
mc008-7.jpg
 

 9. 

A force of F pounds is required to pull an object weighing W pounds up a ramp inclined at mc009-1.jpg degrees from the horizontal.

Find F if mc009-2.jpg pounds and mc009-3.jpg.
a.
33.1 lb
b.
36.1 lb
c.
35.1 lb
d.
37.1 lb
e.
34.1 lb
 

 10. 

A loaded barge is being towed by two tugboats, and the magnitude of the resultant is 6300 pounds directed along the axis of the barge (see figure). Find the tension in the tow lines if they each make an angle mc010-1.jpg with the axis of the barge.

mc010-2.jpg

where mc010-3.jpg
a.
3350.2 lb
b.
3354.2 lb
c.
3351.2 lb
d.
3353.2 lb
e.
3352.2 lb
 

 11. 

Using the figure below, sketch a graph of the given vector. [The graphs in the answer choices are drawn to the same scale as the graph below.]
            mc011-1.jpg
mc011-2.jpg
a.
mc011-3.jpg
d.
mc011-6.jpg
b.
mc011-4.jpg
e.
none of these
c.
mc011-5.jpg
 

 12. 

Find a unit vector in the direction of mc012-1.jpg.
a.
mc012-2.jpg
b.
mc012-3.jpg
c.
mc012-4.jpg
d.
mc012-5.jpg
e.
mc012-6.jpg
 

 13. 

Let w be a vector with initial point mc013-1.jpg and terminal point mc013-2.jpg. Write w as a linear combination of the standard unit vectors i and j.
a.
mc013-3.jpg
b.
mc013-4.jpg
c.
mc013-5.jpg
d.
mc013-6.jpg
e.
mc013-7.jpg
 

 14. 

Find the component form of v if mc014-1.jpg and the angle it makes with the x-axis is 150°.
a.
mc014-2.jpg
b.
mc014-3.jpg
c.
mc014-4.jpg
d.
mc014-5.jpg
e.
mc014-6.jpg
 

 15. 

Three forces with magnitudes of 84 pounds, 83 pounds, and 135 pounds act on an object at angles 160°, 200°, and 280°, respectively, with the positive x-axis. Find the magnitude and direction of the resultant force. Round answers to two decimal places.
a.
188.16 pounds; 224.81°
b.
169.82 pounds; 224.81°
c.
188.16 pounds; 44.81°
d.
169.82 pounds; 44.81°
e.
209.87 pounds; 256.33°
 

 16. 

Use the vectors mc016-1.jpg to find the indicated quantity. State whether the result is a vector or a scalar.

mc016-2.jpg
a.
30; scalar
b.
28; scalar
c.
32; scalar
d.
mc016-3.jpg; vector
e.
mc016-4.jpg; vector
 

 17. 

Use the dot product to find the magnitude of u.

mc017-1.jpg
a.
mc017-2.jpg
b.
mc017-3.jpg
c.
mc017-4.jpg
d.
mc017-5.jpg
e.
mc017-6.jpg
 

 18. 

Find the projection of u onto v.

mc018-1.jpg
a.
mc018-2.jpg
b.
mc018-3.jpg
c.
mc018-4.jpg
d.
mc018-5.jpg
e.
mc018-6.jpg
 

 19. 

Given mc019-1.jpg and mc019-2.jpg, find mc019-3.jpg
a.
30
b.
0
c.
–16
d.
–34
e.
15
 

 20. 

Determine whether u are v and orthogonal, parallel, or neither.
mc020-1.jpg
a.
neither
b.
parallel
c.
orthogonal
 



 
Check Your Work     Start Over