Name: 
 

Chapter 9 Pre Test



Multiple Choice
Identify the choice that best completes the statement or answers the question.
 

 1. 

The given  points represent the vertices of a triangle.Select the  triangle ABC  in the coordinate plane.

mc001-1.jpg
a.

mc001-2.jpg
d.

mc001-5.jpg
b.

mc001-3.jpg
e.

mc001-6.jpg
c.

mc001-4.jpg
 

 2. 

A moving conveyor is built so that it rises 5 meter for each 7 meters of horizontal travel. The conveyor runs between two floors in a factory. The distance between the floors is 4 meters. Find the length of the conveyor. Round your answers to one decimal place.
a.
mc002-1.jpg
b.
mc002-2.jpg
c.
mc002-3.jpg
d.
mc002-4.jpg
e.
mc002-5.jpg
 

 3. 

Find the standard form of the equation of the parabola with the given characteristic and vertex at the origin.

Vertical axis and passes through the point mc003-1.jpg
a.
mc003-2.jpg mc003-3.jpgy
b.
mc003-4.jpgmc003-5.jpgx
c.
mc003-6.jpg mc003-7.jpg
d.
mc003-8.jpg x
e.
mc003-9.jpg mc003-10.jpgx
 

 4. 

The revenue R (in dollars) generated by the sale of x units of a digital camera is given by
mc004-1.jpg.
Approximate the number of sales that will maximize revenue.
a.
Maximum revenue occurs at mc004-2.jpg units.
b.
Maximum revenue occurs at mc004-3.jpg units.
c.
Maximum revenue occurs at mc004-4.jpg units.
d.
Maximum revenue occurs at mc004-5.jpg units.
e.
Maximum revenue occurs at mc004-6.jpg units.
 

 5. 

Find the vertex and focus of the parabola.
mc005-1.jpg
a.
vertex: (0, 0)     focus: mc005-2.jpg
b.
vertex: (0, 0)     focus: mc005-3.jpg
c.
vertex: mc005-4.jpg   focus: (0, 0)
d.
vertex: mc005-5.jpg    focus: (0, 0)
e.
vertex: (0, 0)     focus: mc005-6.jpg
 

 6. 

Select the graph for following equation.

mc006-1.jpg
a.

mc006-2.jpg
d.

mc006-5.jpg
b.

mc006-3.jpg
e.

mc006-6.jpg
c.

mc006-4.jpg
 

 7. 

Find the standard form of the equation of the ellipse with the given characteristics and center at the origin.

Foci: mc007-1.jpg; major axis of length mc007-2.jpg
a.
mc007-3.jpg
b.
mc007-4.jpg
c.
mc007-5.jpg
d.
mc007-6.jpg
e.
mc007-7.jpg
 

 8. 

Find the center and the vertices of the ellipse.
mc008-1.jpg
a.
center: (–8, 8)          vertices: (–2, –4), (2, 4)
b.
center: (0, 0)          vertices: (0, –4), (0, 4)
c.
center: (0, 0)          vertices: (–4, –2), (4, 2)
d.
center: (0, 0)          vertices: (–4, 0), (4, 0)
e.
center: (–8, 8)          vertices: (–2, 0), (2, 0)
 

 9. 

Find the standard form of the equation of the hyperbola with the given characteristics.
vertices: mc009-1.jpg          foci: mc009-2.jpg
a.
mc009-3.jpg
b.
mc009-4.jpg
c.
mc009-5.jpg
d.
mc009-6.jpg
e.
mc009-7.jpg
 

 10. 

Find the standard form of the equation of the hyperbola with the given characteristics.
foci: mc010-1.jpg          asymptotes: mc010-2.jpg
a.
mc010-3.jpg
b.
mc010-4.jpg
c.
mc010-5.jpg
d.
mc010-6.jpg
e.
mc010-7.jpg
 

 11. 

Select the curve represented by the parametric equations.

mc011-1.jpg
mc011-2.jpg
a.

mc011-3.jpg
d.


mc011-6.jpg
b.

mc011-4.jpg
e.

mc011-7.jpg
c.

mc011-5.jpg
 

 12. 

Select the curve represented by the parametric equations.

mc012-1.jpg
mc012-2.jpg
a.

mc012-3.jpg
d.

mc012-6.jpg
b.

mc012-4.jpg
e.

mc012-7.jpg
c.

mc012-5.jpg
 

 13. 

Using following result find a set of parametric equation of conic.

Circle: mc013-1.jpg, mc013-2.jpg

Circle: center: mc013-3.jpg; radius: mc013-4.jpg
a.
mc013-5.jpg, mc013-6.jpg
b.
mc013-7.jpg, mc013-8.jpg
c.
mc013-9.jpg, mc013-10.jpg
d.
mc013-11.jpg, mc013-12.jpg
e.
mc013-13.jpg, mc013-14.jpg
 

 14. 

A projectile is launched at a height of h feet above the ground at an angle of mc014-1.jpg with the horizontal. The initial velocity is mc014-2.jpg feet per second, and the path of the projectile is modeled by the parametric equations
mc014-3.jpg and mc014-4.jpg.
Select the correct graph of the path of a projectile launched from ground level at the value of mc014-5.jpg and mc014-6.jpg

mc014-7.jpg, mc014-8.jpg feet per second
a.

mc014-9.jpg
d.

mc014-12.jpg
b.

mc014-10.jpg
e.

mc014-13.jpg
c.

mc014-11.jpg
 

 15. 

A point in rectangular coordinates is given. Convert the point to polar coordinates.

mc015-1.jpg
a.
mc015-2.jpg
b.
mc015-3.jpg
c.
mc015-4.jpg
d.
mc015-5.jpg
e.
mc015-6.jpg
 

 16. 

Use a graphing utility to find one set of polar coordinates for the point given in rectangular coordinates. Round your answers to three decimal places.

mc016-1.jpg
a.
mc016-2.jpg
b.
mc016-3.jpg
c.
mc016-4.jpg
d.
mc016-5.jpg
e.
mc016-6.jpg
 

 17. 

Select the correct graph of the polar equation. Describe your viewing window.

mc017-1.jpg mc017-2.jpg
a.

mc017-3.jpg   mc017-4.jpg
b.

mc017-5.jpg   mc017-6.jpg
c.

mc017-7.jpg   mc017-8.jpg
d.

mc017-9.jpg    mc017-10.jpg
e.

mc017-11.jpg    mc017-12.jpg
 

 18. 

Identify the conic and select its correct graph.

mc018-1.jpg
a.
mc018-2.jpg Ellipse

mc018-3.jpg

d.
mc018-8.jpg Ellipse

mc018-9.jpg
b.
mc018-4.jpg Ellipse

mc018-5.jpg
e.
mc018-10.jpg Ellipse

mc018-11.jpg
c.
mc018-6.jpg Ellipse

mc018-7.jpg
 

 19. 

Select the polar equation with graph.

mc019-1.jpg
a.
mc019-2.jpg
b.
mc019-3.jpg
c.
mc019-4.jpg
d.
mc019-5.jpg
e.
mc019-6.jpg
 

 20. 

Find a polar equation of the conic with its focus at the pole.

mc020-1.jpg
a.
mc020-2.jpg
b.
mc020-3.jpg
c.
mc020-4.jpg   
d.
mc020-5.jpg
e.
mc020-6.jpg
 



 
Check Your Work     Start Over