Name: 
 

Chapter 10 Pre Test



Multiple Choice
Identify the choice that best completes the statement or answers the question.
 

 1. 

Find the coordinates of the point.

The point is located on the mc001-1.jpg-axis, seven units in front of the mc001-2.jpg-plane.
a.
mc001-3.jpg, mc001-4.jpg, mc001-5.jpg
b.
mc001-6.jpg, mc001-7.jpg, mc001-8.jpg mc001-9.jpg
c.
mc001-10.jpg, mc001-11.jpg, mc001-12.jpg mc001-13.jpg
d.
mc001-14.jpg, mc001-15.jpg, mc001-16.jpg mc001-17.jpg
e.
mc001-18.jpg, mc001-19.jpg, mc001-20.jpg mc001-21.jpg
 

 2. 

Determine the octant(s) in which mc002-1.jpg is located so that the condition(s) is (are) satisfied.

mc002-2.jpg
a.
Octant II 
b.
Octants II, IV, VI, VIII
c.
Octants I, II, III
d.
Octants I, II, III, IV
e.
Octants III, IV, VII, or VIII
 

 3. 

Find the midpoint of the line segment joining the points.

mc003-1.jpg
a.
(mc003-2.jpgmc003-3.jpg, mc003-4.jpg, mc003-5.jpg)
b.
(mc003-6.jpg, mc003-7.jpgmc003-8.jpg, mc003-9.jpg)
c.
(mc003-10.jpg, mc003-11.jpg, mc003-12.jpg)
d.
(mc003-13.jpg, mc003-14.jpg, mc003-15.jpg)
e.
(mc003-16.jpg, mc003-17.jpg, mc003-18.jpg)
 

 4. 

Find the center and radius of the sphere.

mc004-1.jpg
a.
Center: mc004-2.jpg
Radius: mc004-3.jpg
b.
Center: mc004-4.jpg
Radius: mc004-5.jpg
c.
Center: mc004-6.jpg
Radius: mc004-7.jpg
d.
Center: mc004-8.jpg
Radius: mc004-9.jpg
e.
Center: mc004-10.jpg
Radius: mc004-11.jpg
 

 5. 

Find the magnitude of v.

mc005-1.jpg
a.
mc005-2.jpg mc005-3.jpg
b.
mc005-4.jpg mc005-5.jpg
c.
mc005-6.jpg mc005-7.jpg
d.
mc005-8.jpg mc005-9.jpg
e.
mc005-10.jpg mc005-11.jpg
 

 6. 

Find the magnitude of v.

Initial point: mc006-1.jpg
Terminal point: mc006-2.jpg
a.
mc006-3.jpg mc006-4.jpg
b.
mc006-5.jpg mc006-6.jpg
c.
mc006-7.jpg mc006-8.jpg
d.
mc006-9.jpg mc006-10.jpg        
e.
mc006-11.jpg mc006-12.jpg
 

 7. 

Find the dot product of u and v.

mc007-1.jpg
a.
mc007-2.jpg mc007-3.jpg
b.
mc007-4.jpg mc007-5.jpg
c.
mc007-6.jpg mc007-7.jpg
d.
mc007-8.jpg mc007-9.jpg
e.
mc007-10.jpg mc007-11.jpg
 

 8. 

The vector v and its initial point are given. Find the terminal point.

mc008-1.jpg
a.
Terminal point is mc008-2.jpg.
b.
Terminal point is mc008-3.jpg.
c.
Terminal point is mc008-4.jpg.
d.
Terminal point is mc008-5.jpg.
e.
Terminal point is mc008-6.jpg.
 

 9. 

The vector v and its initial point are given. Find the terminal point.

mc009-1.jpg
a.
Terminal point is mc009-2.jpg.
b.
Terminal point is mc009-3.jpg.
c.
Terminal point is mc009-4.jpg.
d.
Terminal point is mc009-5.jpg.
e.
Terminal point is mc009-6.jpg.
 

 10. 

Find the dot product of u and v.
u = –6i + 3j – 7kv = –6i + 9j + 2k
a.
–12i + 12j – 5k
b.
49
c.
–5
d.
36i + 27j – 14k
e.
77
 

 11. 

The vector v and its initial point are given. Find the terminal point.
     v = mc011-1.jpg
     Initial point: (7, 4, 0)
a.
mc011-2.jpg
b.
mc011-3.jpg
c.
mc011-4.jpg
d.
mc011-5.jpg
e.
mc011-6.jpg
 

 12. 

Use the triple scalar product to find the volume of the parallelepiped having adjacent edges u,v,and w.

mc012-1.jpg

mc012-2.jpg

mc012-3.jpg
a.
mc012-4.jpg cubic units
b.
mc012-5.jpg  cubic units
c.
mc012-6.jpg cubic units
d.
mc012-7.jpg cubic units
e.
mc012-8.jpg cubic units
 

 13. 

Use the vectors u and v to find mc013-1.jpg.

mc013-2.jpg
a.
mc013-3.jpg
b.
mc013-4.jpg
c.
mc013-5.jpg
d.
mc013-6.jpg
e.
mc013-7.jpg
 

 14. 

Find the triple scalar product mc014-1.jpg for the vectors
u = mc014-2.jpgv = mc014-3.jpgw = mc014-4.jpg
a.
–59
b.
–293
c.
544
d.
293
e.
0
 

 15. 

Find the volume of the parallelepiped with the given vertices.
A(6,–9,9), B(11,–8,5), C (12, –14, 4), D (17, –13, 0), E (8, –5, 9), F (13, –4, 5), G (14, –10,4), H (19, –9, 0)
a.
56
b.
46
c.
71
d.
66
e.
40
 

 16. 

Find the general form of the equation of the plane passing through the point and perpendicular to the specified vector. [Be sure to reduce the coefficients in your answer to lowest terms by dividing out any common factor.]
(8, 6, 3),  n = i – 6j + k
a.
x – 6y + z + 25 = 0
b.
8x + 6y + 3z – 25 = 0
c.
x – 6y + z – 25 = 0
d.
x – 6y + z = 0
e.
8x + 6y + 3z + 25 = 0
 

 17. 

Find the general form of the equation of the plane passing through the point and perpendicular to the specified line. [Be sure to reduce the coefficients in your answer to lowest terms by dividing out any common factor.]
mc017-1.jpg
a.
3x – 8y + 4z + 39 = 0
b.
3x – 8y + 4z – 39 = 0
c.
x – 3y + 3z – 39 = 0
d.
x – 3y + 3z + 39 = 0
e.
x – 3y + 3z = 0
 

 18. 

Find the general form of the equation of the plane with the given characteristics.
The plane passes through the point (–2, –3, –5) and is parallel to the yz-plane.
a.
x + y + z = –10
b.
y = –3
c.
z = –5
d.
y + z = –8
e.
x = –2
 

 19. 

Determine whether the planes are parallel, orthogonal, or neither.
5x – 2y – 4z = 6
–15x + 6y + 12z = –16
a.
orthogonal
b.
parallel
c.
neither
 

 20. 

Determine whether the planes are parallel, orthogonal, or neither.

mc020-1.jpg
a.
Neither
b.
Parallel
c.
Orthogonal
 



 
Check Your Work     Start Over