Name: 
 

Chapter 10 Post Test



Multiple Choice
Identify the choice that best completes the statement or answers the question.
 

 1. 

Find the coordinates of the point.

The point is located six units behind the mc001-1.jpg-plane, seven
units to the right of the mc001-2.jpg-plane, and eight units above the mc001-3.jpg-plane.
a.
mc001-4.jpg mc001-5.jpg, mc001-6.jpg, mc001-7.jpg
b.
mc001-8.jpg mc001-9.jpg, mc001-10.jpg, mc001-11.jpg
c.
mc001-12.jpg mc001-13.jpg, mc001-14.jpg, mc001-15.jpg
d.
mc001-16.jpg mc001-17.jpg, mc001-18.jpg, mc001-19.jpg
e.
mc001-20.jpg 6, mc001-21.jpg, mc001-22.jpg
 

 2. 

Find the distance between the points.

mc002-1.jpg
a.
mc002-2.jpg units
b.
mc002-3.jpg units
c.
mc002-4.jpgunits
d.
mc002-5.jpgunits
e.
mc002-6.jpgunits
 

 3. 

Find the distance between the points.

mc003-1.jpg
a.
mc003-2.jpg units
b.
mc003-3.jpg units
c.
mc003-4.jpg units
d.
mc003-5.jpg units
e.
mc003-6.jpg units
 

 4. 

Determine the octant(s) in which (x,y,z) is located so that the conditions are satisfied.
x > 0, y > 0, z > 0
a.
octant V
b.
octant I
c.
octant III
d.
octant I or octant II
e.
octant VIII
 

 5. 

Find the midpoint of the line segment joining the points.
(4, 6, 4), (–9, 9, –1)
a.
mc005-1.jpg
b.
mc005-2.jpg
c.
mc005-3.jpg
d.
mc005-4.jpg
e.
mc005-5.jpg
 

 6. 

Find the standard form of the equation of the sphere with the given characteristics.
Center: (9, 8, –9); radius 9
a.
mc006-1.jpg
b.
mc006-2.jpg
c.
mc006-3.jpg
d.
mc006-4.jpg
e.
mc006-5.jpg
 

 7. 

Find the vector z, given mc007-1.jpg.

mc007-2.jpg
a.
mc007-3.jpg mc007-4.jpg
b.
mc007-5.jpg mc007-6.jpg
c.
mc007-7.jpg mc007-8.jpg
d.
mc007-9.jpg mc007-10.jpg
e.
mc007-11.jpg mc007-12.jpg
 

 8. 

Find the dot product of u and v.

mc008-1.jpg
a.
mc008-2.jpg mc008-3.jpg
b.
mc008-4.jpg mc008-5.jpg
c.
mc008-6.jpg mc008-7.jpg
d.
mc008-8.jpg mc008-9.jpg
e.
mc008-10.jpg mc008-11.jpg
 

 9. 

Use vectors to determine whether the points are collinear.
(9, –7, –6), (5, –9, –7), (13, –5, –5)
a.
collinear
b.
not collinear
 

 10. 

Use vectors to determine whether the points are collinear.
(7, 5, –3), (2, 3, –4), (3, 2, –5)
a.
not collinear
b.
collinear
 

 11. 

Use the vectors u and v to find mc011-1.jpg.

mc011-2.jpg
a.
mc011-3.jpg
b.
mc011-4.jpg
c.
mc011-5.jpg
d.
mc011-6.jpg
e.
mc011-7.jpg
 

 12. 

Find mc012-1.jpg and show that it is orthogonal to both u and v.

mc012-2.jpg
a.
mc012-3.jpg
b.
mc012-4.jpg
c.
mc012-5.jpg
d.
mc012-6.jpg
e.
mc012-7.jpg
 

 13. 

Find the area of the parallelogram that has the vectors as adjacent sides.

mc013-1.jpg
a.
mc013-2.jpg mc013-3.jpg square units
b.
mc013-4.jpg mc013-5.jpg square units
c.
mc013-6.jpg mc013-7.jpg square units
d.
mc013-8.jpg mc013-9.jpg square units
e.
mc013-10.jpg mc013-11.jpg square units
 

 14. 

Use the triple scalar product to find the volume of the parallelepiped having adjacent edges u,v, and w.

mc014-1.jpg

mc014-2.jpg

mc014-3.jpg
a.
mc014-4.jpg  cubic units
b.
mc014-5.jpg cubic units
c.
mc014-6.jpg cubic units
d.
mc014-7.jpg cubic units
e.
mc014-8.jpg cubic units
 

 15. 

Find u ´ v.
u = 4i + j – 3kv = –3i + 5j + k
a.
–10
b.
–12i + 5j – 3k
c.
16i – 5j + 23k
d.
–20
e.
16i + 5j + 23k
 

 16. 

Find the area of the triangle with the given vertices.
(5, –1, 2), (7,–4,–2), (2, –6, 3)
a.
mc016-1.jpg
b.
mc016-2.jpg
c.
0
d.
mc016-3.jpg
e.
5
 

 17. 

Find the general form of the equation of the plane passing through the point and perpendicular to the specified vector or line.

Point: mc017-1.jpg
Perpendicular to: mc017-2.jpg
a.
mc017-3.jpg
b.
mc017-4.jpg
c.
mc017-5.jpg
d.
mc017-6.jpg
e.
mc017-7.jpg
 

 18. 

Find a set of symmetric equations of the line that passes through the given points.

mc018-1.jpg
a.
mc018-2.jpg
b.
mc018-3.jpg
c.
mc018-4.jpg
d.
mc018-5.jpg
e.
mc018-6.jpg
 

 19. 

Find a set of parametric equations of the line.

Passes through mc019-1.jpg and is parallel to the xy-plane and the yz-plane
a.
mc019-2.jpg
b.
mc019-3.jpg
c.
mc019-4.jpg
d.
mc019-5.jpg
e.
mc019-6.jpg
 

 20. 

Find the general form of the equation of the plane passing through the point and perpendicular to the specified line. [Be sure to reduce the coefficients in your answer to lowest terms by dividing out any common factor.]
mc020-1.jpg
a.
3x – 8y + 4z + 39 = 0
b.
3x – 8y + 4z – 39 = 0
c.
x – 3y + 3z – 39 = 0
d.
x – 3y + 3z + 39 = 0
e.
x – 3y + 3z = 0
 



 
Check Your Work     Start Over