Section 1.9 Inverse Functions

Objective: In this lesson you learned how to find inverse functions graphically and algebraically.

Important Vocabulary

Define each term or concept.

Inverse function

Horizontal Line Test

I. Inverse Functions (Pages 84–85)

For a function f that is defined by a set of ordered pairs, to form the inverse function of f, . . .

For a function f and its inverse f^{-1} , the domain of f is equal to ______, and the range of f is equal to

To verify that two functions, f and g, are inverse functions of each other, . . .

Example: Verify that the functions f(x) = 2x - 3 and $g(x) = \frac{x+3}{2}$ are inverse functions of each other.

II. The Graph of an Inverse Function (Page 86)

If the point (a, b) lies on the graph of f, then the point (_____) must lie on the graph of f^{-1} and vice versa. The graph of f^{-1} is a reflection of the graph of f in the line

What you should learn How to use graphs of functions to determine whether functions have inverse functions

What you should learn How to find inverse functions informally and verify that two functions are inverse functions of each other

Course Number

Instructor

Date

How to use the

III. One-to-One Functions (Page 87)

To tell whether a function has an inverse function from its graph, . . .

A function *f* is **one-to-one** if . . .

A function f has an inverse function if and only if f is

Example: Does the graph of the function at the right have an inverse function? Explain.

IV. Finding Inverse Functions Algebraically (Pages 88–89)

To find the inverse of a function f algebraically, ...

1)

- 2)
- 3)
- 4)

5)

Example: Find the inverse (if it exists) of f(x) = 4x - 5.

Page(s)

Exercises

1

-1₋₁

-3

3

Х

5

What you should learn

Horizontal Line Test to determine if functions are

