Name: 
 

Chapter 11 Pre Test



Multiple Choice
Identify the choice that best completes the statement or answers the question.
 

 1. 

Determine the octant(s) in which mc001-1.jpg is located so that the condition(s) is (are) satisfied.

mc001-2.jpg
a.
Octants I, II, III, IV (above the mc001-3.jpg-plane)
b.
Octant II (above the mc001-4.jpg-plane)
c.
Octants I, II, III, IV (above the xy-plane)
d.
Octants II, IV, VI, VIII (above the xy-plane)
e.
Octant IV (above the mc001-5.jpg-plane)
 

 2. 

Find the distance between the points.

mc002-1.jpg
a.
mc002-2.jpg units
b.
mc002-3.jpg units
c.
mc002-4.jpg units
d.
mc002-5.jpg units
e.
mc002-6.jpg units
 

 3. 

Find the midpoint of the line segment joining the points.

mc003-1.jpg
a.
(mc003-2.jpg, mc003-3.jpg, mc003-4.jpg)
b.
(mc003-5.jpg, mc003-6.jpg, mc003-7.jpg)
c.
(mc003-8.jpg, mc003-9.jpg, mc003-10.jpg)
d.
(mc003-11.jpg, mc003-12.jpg, mc003-13.jpgmc003-14.jpg)
e.
(mc003-15.jpg, mc003-16.jpg, mc003-17.jpg)
 

 4. 

Find the standard form of the equation of the sphere with the given characteristics.

Center: mc004-1.jpg; radius: mc004-2.jpg
a.
mc004-3.jpg
b.
mc004-4.jpg
c.
mc004-5.jpg
d.
mc004-6.jpg
e.
mc004-7.jpg
 

 5. 

Find the coordinates of the point located 6 units behind the yz-plane, 4 units to the left of the xz-plane, and 8 units above the xy-plane.
a.
mc005-1.jpg
b.
mc005-2.jpg
c.
mc005-3.jpg
d.
mc005-4.jpg
e.
mc005-5.jpg
 

 6. 

Find the standard form of the equation of the sphere with the given characteristics.
Center: (9, 8, –9); radius 9
a.
mc006-1.jpg
b.
mc006-2.jpg
c.
mc006-3.jpg
d.
mc006-4.jpg
e.
mc006-5.jpg
 

 7. 

Find the angle mc007-1.jpg between the vectors. Round your answer to two decimal places.

mc007-2.jpg
a.
mc007-3.jpg
b.
mc007-4.jpg
c.
mc007-5.jpg
d.
mc007-6.jpg
e.
mc007-7.jpg
 

 8. 

Find the angle mc008-1.jpg between the vectors. Round your answer to two decimal places.

mc008-2.jpg
a.
mc008-3.jpg
b.
mc008-4.jpg
c.
mc008-5.jpg
d.
mc008-6.jpg
e.
mc008-7.jpg
 

 9. 

Find the angle between the vectors u and v. Express your answer in degrees and round to the nearest tenth of a degree.
u = –2i –3j –3kv = –2i –2j –7k     
a.
41.2°
b.
61.1°
c.
48.8°
d.
28.9°
e.
90°
 

 10. 

The weight of a crate is 500 newtons. Find the tension in each of the supporting cables shown in the figure. The coordinates of the points A, B, C, and D are given below the figure. Round to the nearest newton.
mc010-1.jpg
                   [Figure not necessarily to scale.]

point A = (0,0,–110),  point B = (100,0,0),  point C = (–50,50,0),  point D = (0,–180,0)
a.
cable AB = 190; cable AC = 334; cable AD = 150
b.
cable AB = 334; cable AC = 190; cable AD = 150
c.
cable AB = 190; cable AC = 150; cable AD = 334
d.
cable AB = 150; cable AC = 334; cable AD = 190
e.
cable AB = 334; cable AC = 150; cable AD = 190
 

 11. 

Use the vectors u and v to find mc011-1.jpg.

mc011-2.jpg
a.
mc011-3.jpg
b.
mc011-4.jpg
c.
mc011-5.jpg
d.
mc011-6.jpg
e.
mc011-7.jpg
 

 12. 

Find a unit vector orthogonal to u and v.

mc012-1.jpg
a.
mc012-2.jpg
b.
mc012-3.jpg
c.
mc012-4.jpg
d.
mc012-5.jpg
e.
mc012-6.jpg
 

 13. 

Find the area of the parallelogram that has the vectors as adjacent sides.

mc013-1.jpg
a.
mc013-2.jpg mc013-3.jpg square units
b.
mc013-4.jpg mc013-5.jpg square units
c.
mc013-6.jpg mc013-7.jpg square units
d.
mc013-8.jpg mc013-9.jpg square units
e.
mc013-10.jpg mc013-11.jpg square units
 

 14. 

Find the area of the parallelogram that has the vectors as adjacent sides.

mc014-1.jpg
a.
mc014-2.jpg mc014-3.jpg square units
b.
mc014-4.jpg mc014-5.jpg square units
c.
mc014-6.jpg mc014-7.jpg square units
d.
mc014-8.jpg mc014-9.jpg square units
e.
mc014-10.jpg mc014-11.jpg square units
 

 15. 

Find mc015-1.jpg and show that it is orthogonal to both u and v.

mc015-2.jpg
a.
mc015-3.jpg
b.
mc015-4.jpg
c.
mc015-5.jpg
d.
mc015-6.jpg
e.
mc015-7.jpg
 

 16. 

Find the area of the parallelogram that has the vectors as adjacent sides.
u = mc016-1.jpg, v = mc016-2.jpg
a.
mc016-3.jpg
b.
mc016-4.jpg
c.
12
d.
mc016-5.jpg
e.
20
 

 17. 

Find a set of symmetric equations of the line that passes through the given points.

mc017-1.jpg
a.
mc017-2.jpg
b.
mc017-3.jpg
c.
mc017-4.jpg
d.
mc017-5.jpg
e.
mc017-6.jpg
 

 18. 

Find a set of parametric equations of the line that passes through the given points.

mc018-1.jpg
a.
mc018-2.jpg
b.
mc018-3.jpg
c.
mc018-4.jpg
d.
mc018-5.jpg
e.
mc018-6.jpg
 

 19. 

Find the general form of the equation of the plane passing through the point and perpendicular to the specified vector. [Be sure to reduce the coefficients in your answer to lowest terms by dividing out any common factor.]
(8, 6, 3),  n = i – 6j + k
a.
x – 6y + z + 25 = 0
b.
8x + 6y + 3z – 25 = 0
c.
x – 6y + z – 25 = 0
d.
x – 6y + z = 0
e.
8x + 6y + 3z + 25 = 0
 

 20. 

Find the angle between the two planes.

mc020-1.jpg
a.
mc020-2.jpg
b.
mc020-3.jpg
c.
mc020-4.jpg
d.
mc020-5.jpg
e.
mc020-6.jpg
 



 
Check Your Work     Start Over