Name: 
 

Chapter 9 Post Test



 1. 

The weekly rentals for a newly released DVD of an animated film at a local video store decreased each week. At the same time, the weekly rentals for a newly released DVD of a horror film increased each week. Models that approximate the weekly rentals R for each DVD are

mc001-1.jpg

where x represents the number of weeks each DVD was in the store, with mc001-2.jpg corresponding to the first week. After how many weeks will the rentals for the two movies be equal?
a.
11 weeks
b.
7 weeks
c.
5 weeks
d.
13 weeks
e.
9 weeks
 

 2. 

Solve the system by the method of substitution.

mc002-1.jpg
a.
mc002-2.jpg
b.
mc002-3.jpg
c.
mc002-4.jpg
d.
mc002-5.jpg
e.
mc002-6.jpg
 

 3. 

Solve the system by the method of substitution.

mc003-1.jpg
a.
mc003-2.jpg
b.
No solution
c.
mc003-3.jpg
d.
mc003-4.jpg
e.
mc003-5.jpg
 

 4. 

Solve the system by the method of elimination and check any solutions algebraically.

mc004-1.jpg
a.
mc004-2.jpg
b.
mc004-3.jpg
c.
mc004-4.jpg
d.
mc004-5.jpg
e.
mc004-6.jpg
 

 5. 

Find the equilibrium point of the demand and supply equations. The equilibrium point is the price p and number of units x that satisfy both the demand and supply equations.

mc005-1.jpg
a.
mc005-2.jpg
b.
mc005-3.jpg
c.
mc005-4.jpg
d.
mc005-5.jpg
e.
mc005-6.jpg
 

 6. 

Find the equilibrium point of the demand and supply equations. The equilibrium point is the price p and number of units x that satisfy both the demand and supply equations.

mc006-1.jpg
a.
mc006-2.jpg
b.
mc006-3.jpg
c.
mc006-4.jpg
d.
mc006-5.jpg
e.
mc006-6.jpg
 

 7. 

Solve the system by the method of elimination and check any solutions algebraically.

mc007-1.jpg
a.
mc007-2.jpg
b.
mc007-3.jpg
c.
mc007-4.jpg
d.
mc007-5.jpg
e.
mc007-6.jpg
 

 8. 

Solve the system of linear equations and check any solution algebraically.

mc008-1.jpg
a.
mc008-2.jpg
b.
mc008-3.jpg
c.
mc008-4.jpg
d.
mc008-5.jpg
e.
mc008-6.jpg
 

 9. 

Perform the row operation and find the equivalent system.
Add Equation 1 to Equation 2.

mc009-1.jpg
a.
mc009-2.jpg
b.
mc009-3.jpg
c.
mc009-4.jpg
d.
mc009-5.jpg
e.
mc009-6.jpg
 

 10. 

Write the form of the partial fraction decomposition of the rational expression. Do not solve for the constants.

mc010-1.jpg
a.
mc010-2.jpg
b.
mc010-3.jpg
c.
mc010-4.jpg
d.
mc010-5.jpg
e.
mc010-6.jpg
 

 11. 

Write the partial fraction decomposition of the rational expression.

mc011-1.jpg
a.
mc011-2.jpg
b.
mc011-3.jpg
c.
mc011-4.jpg
d.
mc011-5.jpg
e.
mc011-6.jpg
 

 12. 

Write the partial fraction decomposition of the rational expression.
mc012-1.jpg
a.
mc012-2.jpg
b.
mc012-3.jpg
c.
mc012-4.jpg
d.
mc012-5.jpg
e.
mc012-6.jpg
 

 13. 

Select a set of inequalities to describe the region.

mc013-1.jpg
a.
mc013-2.jpg
b.
mc013-3.jpg
c.
mc013-4.jpg
d.
mc013-5.jpg
e.
mc013-6.jpg
 

 14. 

Find the consumer surplus and producer surplus.

Demand mc014-1.jpg

Supply mc014-2.jpg
a.
Consumer surplus: mc014-3.jpg
Producer surplus: mc014-4.jpg
b.
Consumer surplus: mc014-5.jpg
Producer surplus: mc014-6.jpg
c.
Consumer surplus: mc014-7.jpg
Producer surplus: mc014-8.jpg
d.
Consumer surplus: mc014-9.jpg
Producer surplus: mc014-10.jpg
e.
Consumer surplus: mc014-11.jpg
Producer surplus: mc014-12.jpg
 

 15. 

A dietitian is asked to design a special dietary supplement using two different foods. Each ounce of food X contains 20 units of calcium, 15 units of iron, and 10 units of vitamin B. Each ounce of food Y contains 10 units of calcium, 10 units of iron, and 20 units of vitamin B. The minimum daily requirements of the diet are 200 units of calcium, 150 units of iron, and 250 units of vitamin B. Write a system of inequalities describing the different amounts of food X and food Y that can be used.
a.
mc015-1.jpg
b.
mc015-2.jpg
c.
mc015-3.jpg
d.
mc015-4.jpg
e.
mc015-5.jpg
 

 16. 

Find the maximum value of the objective function and where it occurs, subject to the indicated constraints.

Objective function:

mc016-1.jpg

Constraints:

mc016-2.jpg



mc016-3.jpg
a.
Maximum at mc016-4.jpg
b.
Maximum at mc016-5.jpg
c.
Maximum at mc016-6.jpg
d.
Maximum at mc016-7.jpg
e.
Maximum at mc016-8.jpg
 

 17. 

Find the minimum value of the objective function and where it occurs, subject to the indicated constraints.

Objective function:

mc017-1.jpg

Constraints:

mc017-2.jpg



mc017-3.jpg
a.
Minimum at mc017-4.jpg
b.
Minimum at mc017-5.jpg
c.
Minimum at mc017-6.jpg
d.
Minimum at mc017-7.jpg
e.
Minimum at mc017-8.jpg
 

 18. 

Select the region determined by the constraints. Then find the maximum value of the objective function (if possible) and where it occurs, subject to the indicated constraints.

Objective function:

mc018-1.jpg

Constraints:

mc018-2.jpg
a.

mc018-3.jpg

Maximum at mc018-4.jpg
d.

mc018-9.jpg

Maximum at mc018-10.jpg
b.

mc018-5.jpg

Maximum at mc018-6.jpg
e.

mc018-11.jpg

Maximum at mc018-12.jpg
c.

mc018-7.jpg

Maximum at mc018-8.jpg
 

 19. 

The linear programming problem has an unusual characteristic. Select a graph of the solution region for the problem and describe the unusual characteristic. Find the minimum  value of the objective function (if possible) and where it occurs.

mc019-1.jpg

Constraints:

mc019-2.jpg
a.

mc019-3.jpg

Minimum at mc019-4.jpg
d.

mc019-9.jpg

Minimum at mc019-10.jpg
b.

mc019-5.jpg

Minimum at mc019-6.jpg
e.

mc019-11.jpg


No minimum
c.

mc019-7.jpg

Minimum at mc019-8.jpg
 

 20. 

An accounting firm has 780 hours of staff time and 272 hours of reviewing time
available each week. The firm charges mc020-1.jpg for an audit and mc020-2.jpg for a tax return. Each audit requires 60 hours of staff time and 16 hours of review time. Each tax return requires 10 hours of staff time and 4 hours of review time. What numbers of audits and tax returns will yield an optimal revenue? What is the optimal revenue?
a.
0 audit
65 tax returns
Optimal revenue: mc020-3.jpg
b.
5 audits
48 tax return
Optimal revenue: mc020-4.jpg
c.
16 audits
0 tax return
Optimal revenue: mc020-5.jpg
d.
10 audits
10 tax returns
Optimal revenue: mc020-6.jpg
e.
13 audit
0 tax returns
Optimal revenue: mc020-7.jpg
 



 
Check Your Work     Start Over