Name: 
 

Chapter 9 Pre Test



 1. 

Use the Law of Sines to solve (if possible) the triangle. Round your answers to two decimal places.

mc001-1.jpg
a.
mc001-2.jpg
b.
mc001-3.jpg
c.
mc001-4.jpg
d.
mc001-5.jpg
e.
No Solution
 

 2. 

In the figure,mc002-1.jpg and mc002-2.jpg are positive angles.

mc002-3.jpg

mc002-4.jpg
Write mc002-5.jpg as a function of mc002-6.jpg
.
a.
mc002-7.jpg
b.
mc002-8.jpg
c.
mc002-9.jpg
d.
mc002-10.jpg
e.
mc002-11.jpg
 

 3. 

A park ranger at point A observes a fire in the direction mc003-1.jpg. Another ranger at point B, 5 miles due east of A, sites the same fire at mc003-2.jpg. Determine the distance from point B to the fire. Round answer to two decimal places.
a.
2.18 miles
b.
4.55 miles
c.
2.51 miles
d.
4.84 miles
e.
4.20 miles
 

 4. 

Use the law of Cosines to solve the given triangle. Round your answer to two decimal places.

mc004-1.jpg

mc004-2.jpg
a.
mc004-3.jpg
b.
mc004-4.jpg
c.
mc004-5.jpg
d.
mc004-6.jpg
e.
mc004-7.jpg
 

 5. 

Use the law of Cosines to solve the given triangle. Round your answer to two decimal places.

mc005-1.jpg mc005-2.jpg , b = mc005-3.jpg
a.
mc005-4.jpg 
b.
mc005-5.jpg
c.
mc005-6.jpg
d.
mc005-7.jpg
e.
mc005-8.jpg
 

 6. 

Determine the angle mc006-1.jpg in the design of the streetlight shown in the following  figure.

mc006-2.jpg

mc006-3.jpg

a.
mc006-4.jpg
b.
mc006-5.jpg
c.
mc006-6.jpg
d.
mc006-7.jpg
e.
mc006-8.jpg
 

 7. 

Given mc007-1.jpg, mc007-2.jpg, and mc007-3.jpg, use the Law of Cosines to solve the triangle for the value of C. Round your answer to two decimal places.
mc007-4.jpg
a.
mc007-5.jpg
b.
mc007-6.jpg
c.
mc007-7.jpg
d.
mc007-8.jpg
e.
mc007-9.jpg
 

 8. 

Given mc008-1.jpg, mc008-2.jpg, and mc008-3.jpg, use the Law of Cosines to solve the triangle for the value of c. Round your answer to two decimal places.
a.
16.29
b.
11.26
c.
15.57
d.
17.00
e.
14.13
 

 9. 

A vertical pole 29 feet tall stands on a hillside that makes an angle of mc009-1.jpg with the horizontal. Determine the approximate length of cable that would be needed to reach from the top of the pole to a point 78 feet downhill from the base of the pole. Round your answer to two decimal places.
a.
82.88 feet
b.
75.35 feet
c.
99.45 feet
d.
88.40 feet
e.
mc009-2.jpg feet
 

 10. 

Select a linear combination of the standard unit vectors i and j of given initial and terminal points of a vector.
  
Initial Point
Terminal Point
mc010-1.jpg
mc010-2.jpg

a.
mc010-3.jpg
b.
mc010-4.jpg
c.
mc010-5.jpg
d.
mc010-6.jpg
e.
mc010-7.jpg
 

 11. 

Given mc011-1.jpg and mc011-2.jpg, determine mc011-3.jpg.
a.
mc011-4.jpg
b.
mc011-5.jpg
c.
mc011-6.jpg
d.
mc011-7.jpg
e.
mc011-8.jpg
 

 12. 

Find a unit vector in the direction of mc012-1.jpg.
a.
mc012-2.jpg
b.
mc012-3.jpg
c.
mc012-4.jpg
d.
mc012-5.jpg
e.
mc012-6.jpg
 

 13. 

Given mc013-1.jpg and mc013-2.jpg, find mc013-3.jpg.
a.
–28
b.
–22
c.
–13
d.
–34
e.
29
 

 14. 

Given vectors mc014-1.jpg and mc014-2.jpg determine the quantity indicated below.
mc014-3.jpg
a.
–24
b.
–15
c.
–27
d.
3
e.
–9
 

 15. 

A 725-pound trailer is sitting on an exit ramp inclined at 36° on Highway 35. How much force is required to keep the trailer from rolling back down the exit ramp? Round your answer to two decimal places.
a.
566.49 pounds
b.
546.44 pounds
c.
586.54 pounds
d.
506.34 pounds
e.
426.14 pounds
 

 16. 

Plot the complex number and find its absolute value.

mc016-1.jpg
a.

mc016-2.jpg
mc016-3.jpgmc016-4.jpg
d.

mc016-11.jpg
mc016-12.jpgmc016-13.jpg
b.

mc016-5.jpg
mc016-6.jpgmc016-7.jpg
e.

mc016-14.jpg
mc016-15.jpgmc016-16.jpg
c.

mc016-8.jpg
mc016-9.jpgmc016-10.jpg
 

 17. 

Find the standard form of the complex number. Then represent the complex number graphically.

mc017-1.jpg
a.

mc017-2.jpg
mc017-3.jpg
d.

mc017-8.jpg
mc017-9.jpg
b.

mc017-4.jpg
mc017-5.jpg
e.

mc017-10.jpg
mc017-11.jpg
c.

mc017-6.jpg
mc017-7.jpg
 

 18. 

Find the trigonometric form of the complex number shown below.
mc018-1.jpg
a.
mc018-2.jpg
b.
mc018-3.jpg
c.
mc018-4.jpg
d.
mc018-5.jpg
e.
mc018-6.jpg
 

 19. 

Find the product mc019-1.jpg using trigonometric forms. Leave the result in trigonometric form.
a.
mc019-2.jpg
b.
mc019-3.jpg
c.
mc019-4.jpg
d.
mc019-5.jpg
e.
mc019-6.jpg
 

 20. 

Find the fifth roots of mc020-1.jpg Write the roots in trigonometric form.
a.
mc020-2.jpg
b.
mc020-3.jpg
c.
mc020-4.jpg
d.
mc020-5.jpg
e.
mc020-6.jpg
 



 
Check Your Work     Start Over