Name: 
 

Chapter 5 Pre Test



 1. 

Select the graph of the function.

mc001-1.jpg
a.

mc001-2.jpg
d.

mc001-5.jpg
b.

mc001-3.jpg
e.

mc001-6.jpg
c.

mc001-4.jpg
 

 2. 

Use a graphing utility to construct a table of values for the function. Round your answer to three decimal places.

mc002-1.jpg
a.
mc002-2.jpg
b.
mc002-3.jpg
c.
mc002-4.jpg
d.
mc002-5.jpg
e.
mc002-6.jpg
 

 3. 

Select the graph of the exponential function.

mc003-1.jpg
a.

mc003-2.jpg
d.

mc003-5.jpg
b.

mc003-3.jpg
e.

mc003-6.jpg
c.

mc003-4.jpg
 

 4. 

Write the logarithmic equation in exponential form.

mc004-1.jpg
a.
mc004-2.jpg
b.
mc004-3.jpg
c.
mc004-4.jpg
d.
mc004-5.jpg
e.
mc004-6.jpg
 

 5. 

Evaluate the function at the indicated value of mc005-1.jpg. Round your result to three decimal places.

mc005-2.jpg
a.
3.132
b.
–2.033
c.
–3.132
d.
2.033
e.
22.92
 

 6. 

Evaluate the function at the indicated value of mc006-1.jpg. Round your result to three decimal places.

mc006-2.jpg
a.
–1.099
b.
3
c.
1.792
d.
–1.792
e.
1.099
 

 7. 

Find the exact value of the logarithmic expression without using a calculator.

mc007-1.jpg
a.
mc007-2.jpg
b.
mc007-3.jpg
c.
mc007-4.jpg
d.
mc007-5.jpg
e.
mc007-6.jpg
 

 8. 

Condense the expression to the logarithm of a single quantity.

mc008-1.jpg
a.
mc008-2.jpg
b.
mc008-3.jpg
c.
mc008-4.jpg
d.
mc008-5.jpg
e.
mc008-6.jpg
 

 9. 

Use the properties of logarithms to rewrite and simplify the logarithmic expression.

mc009-1.jpg
a.
mc009-2.jpg
b.
mc009-3.jpg
c.
mc009-4.jpg
d.
mc009-5.jpg
e.
mc009-6.jpg
 

 10. 

Evaluate the logarithm mc010-1.jpg using the change of base formula. Round to 3 decimal places.
a.
–1.745
b.
–0.692
c.
0.630
d.
0.273
e.
–0.573
 

 11. 

Find the exact value of mc011-1.jpg without using a calculator.
a.
mc011-2.jpg
b.
mc011-3.jpg
c.
mc011-4.jpg
d.
–1
e.
mc011-5.jpg
 

 12. 

Find the exact value of mc012-1.jpg without using a calculator.
a.
5
b.
2.5
c.
1.25
d.
2
e.
3
 

 13. 

Solve the exponential equation algebraically. Approximate the result to three decimal places.

mc013-1.jpg   
a.
mc013-2.jpg
b.
mc013-3.jpg
c.
mc013-4.jpg
d.
mc013-5.jpg
e.
mc013-6.jpg
 

 14. 

Solve the exponential equation algebraically. Approximate the result to three decimal places.

mc014-1.jpg
a.
mc014-2.jpg
b.
mc014-3.jpg
c.
mc014-4.jpg
d.
mc014-5.jpg
e.
mc014-6.jpg
 

 15. 

Solve the logarithmic equation algebraically. Approximate the result to three decimal places.

mc015-1.jpg
a.
mc015-2.jpg
b.
mc015-3.jpg
c.
mc015-4.jpg
d.
mc015-5.jpg
e.
mc015-6.jpg
 

 16. 

Solve the logarithmic equation algebraically. Approximate the result to three decimal places.

mc016-1.jpg
a.
mc016-2.jpg
b.
mc016-3.jpg
c.
mc016-4.jpg
d.
mc016-5.jpg
e.
mc016-6.jpg
 

 17. 

Solve the logarithmic equation algebraically. Approximate the result to three decimal places.

mc017-1.jpg
a.
100,000,000
b.
100,000,000,000
c.
1,000,000,000
d.
10,000,000,000
e.
10,000,000
 

 18. 

Solve the logarithmic equation algebraically. Approximate the result to three decimal places.

mc018-1.jpg
a.
mc018-2.jpg
b.
mc018-3.jpg
c.
mc018-4.jpg
d.
mc018-5.jpg
e.
mc018-6.jpg
 

 19. 

Solve the equation algebraically. Round the result to three decimal places.

mc019-1.jpg
a.
mc019-2.jpg
b.
mc019-3.jpg
c.
mc019-4.jpg
d.
mc019-5.jpg
e.
mc019-6.jpg
 

 20. 

The population P of a culture of bacteria is described by the equation mc020-1.jpg, where t is the time, in hours, relative to the time at which the population was 1500. What was the population at mc020-2.jpg hours?
a.
mc020-3.jpg
b.
mc020-4.jpg
c.
mc020-5.jpg
d.
mc020-6.jpg
e.
mc020-7.jpg
 



 
Check Your Work     Start Over