Section P.4 Factoring Polynomials

Objective: In this lesson you learned how to factor polynomials.

I. Polynomials with Common Factors (Page 34)

Factoring is . . .

If a polynomial cannot be factored using integer coefficients,

then it is _____ or _____

The simplest type of factoring involves a polynomial that can be written as the product of a monomial and another polynomial. The technique used here is the Distributive Property in reverse: ab + ac = ______

Example : Factor $3w^3 - 12w^2 + 15w$.

II. Factoring Special Polynomial Forms (Pages 35–36)

Complete each of the special factoring forms below. **Difference of Two Squares** $u^2 - v^2$

$$u^{2} + 2uv + v^{2}$$

 $u^{2} - 2uv + v^{2}$ _____

Sum of Difference of Two Cubes

 $u^3 + v^3 \underline{\qquad} u^3 - v^3 - u^3 - u^3 - v^3 - u^3 - v^3 - u^3 - u^3 - v^3 - u^3 - v^3 - u^3 - u^3 - v^3 - u^3 - v^3 - u^3 - u^3 - v^3 - u^3 - u^3 - v^3 - u^3 - u^3$

To recognize perfect square terms, ...

To recognize a perfect square trinomial, note that . . .

Course Number

Instructor

Date

What you should learn How to remove common factors from polynomials

What you should learn How to factor special polynomial forms **Example:** Factor: (a) $64 - 25y^2$ (b) $9x^2 + 12xy + 4y^2$

III. Trinomials with Binomial Factors (Page 37)

To factor a trinomial of the form $ax^2 + bx + c =$ ([]x+[])([]x+[]), the goal is to . . .

Example: Explain how to factor $x^2 + 3x - 18$.

IV. Factoring by Grouping (Page 38)

To factor a polynomial with more than three terms by the grouping method, . . .

What you should learn How to factor polynomials by grouping

List four guidelines for factoring polynomials:

- 1)
- 2)
- 3)
- 4)

Homework Assignment

Page(s)

Exercises

What you should learn How to factor trinomials as the product of two binomials